ASX Announcement

22 May 2023

New High-Grade Gold Results at Guyer Target Area

Iceni Gold Limited (ASX: ICL) (**Iceni** or the **Company**) is pleased to provide an **exploration update** on the Guyer Well Target Area.

Highlights

• High-grade rock chip assays have been returned from the Guyer target area with assays including:

136g/t Au 126g/t Au 67.4g/t Au 18.3g/t Au 15.5g/t Au.

- Gold bearing rock chips support existing targeting work.
- Ongoing fieldwork has discovered over **700 gold nuggets** along the **Guyer Trend** to date.
- More than 100 gold nuggets have been recovered during the last 4 weeks.
- Results from Guyer South AC drilling have identified bedrock gold anomalism beneath transported cover.
- Exploration work has located historic workings associated with the **11km long granite contact** and the **7km long banded iron formation (BIF) Trend** at Guyer.
- Mineralisation associated with granite contacts or BIF trends occur at major regional mines such as King of the Hills, Mt Morgans, Granny Smith and Sunrise Dam.
- Elevated tellurium (Te) in **Guyer** rock chip results is similar to nearby gold deposits known to have tellurides, like the **Sunrise Dam**, **Wallaby** and **Jupiter** gold deposits.
- The Guyer North target is presently being prepared for the commencement of exploration drilling.

Technical Director David Nixon commented:

"New high-grade gold results have been discovered within the Guyer target area, providing strong evidence of deeper buried mineralisation being revealed at surface by the Company's ongoing exploration work.

The high-grade rock chip results from in-situ outcrop are exciting because they confirm and support the existing gold UFF+ soil anomalies.

The Guyer South AC drilling results also demonstrate that gold anomalism is concealed beneath deep transported cover.

The Guyer target area continues to deliver in-situ gold bearing rock chips and significant numbers of gold nuggets over key areas, and these results continue to strengthen the previous results from broad spaced Air Core holes, specifically at Guyer North, where a number of significant targets are being prepared for future exploration drilling".

Registered Address

Iceni Gold Limited Level 2 41-43 Ord Street West Perth WA 6005

ASX: **ICL** ACN: **639 626 949** t: +61 6458 4200 e: admin@icenigold.com.au w: icenigold.com.au Brian Rodan Executive Chairman David Nixon Technical Director

Corporate

Keith Murray Non-Executive Director Hayley McNamara Non-Executive Director Sebastian Andre Company Secretary Project 14 Mile Well Guyer Well Capital Structure

Shares: 208,571,428 Options: 19,706,857

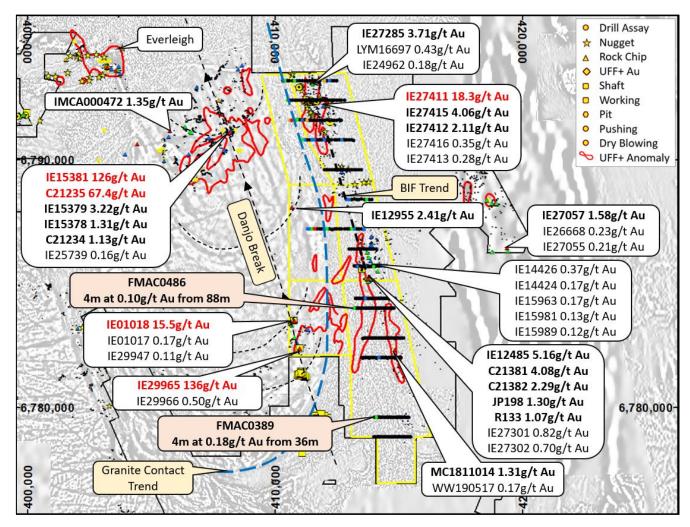


Figure 1 Gold rock chip assays across the Guyer Well target area and the Guyer South AC results.

Ongoing rock chip sampling across the Guyer target area has delivered several significant gold results, that include several **high-grade gold results** at Granite Contact South, **Guyer North** and East Well. The gold anomalism is supported by multi-element geochemistry, which reinforces the anomalies.

The majority of gold anomalous samples are hosted by quartz veining in granite, andesite or sediments, sometimes displaying evidence of sulphides or boxworks after sulphides.

Peak gold values from rock chip sampling include the following results:

Table 1 Summary of High-Grade Rock Chip Results from Guyer						
Sample #	Significant Results					
IE29965	136g/t Au , 3.03g/t Ag, 0.15g/t Te					
IE15381	126g/t Au , 3.73g/t Ag, 0.49 g/t Te					
C21235	67.4g/t Au , 7.38g/t Ag					
IE27411	18.3g/t Au , 1.14g/t Ag, 2.16g/t Te					
IE01018	15.5g/t Au , 2.34g/t Ag, 20.7g/t Te					

Guyer North

Rock chip samples from the **Guyer North** prospect returned significant gold results that support the existing gold anomalies. Gold mineralisation was associated with quartz veining in andesite on the eastern side of the ridge at Guyer North. A number of these samples had anomalously high silver values when compared to gold. This geochemical relationship could be indicative of an earlier epizonal style of mineralisation.

Key results include:

Table 2 Summary of Key Results from Guyer North					
Sample	Significant Results				
IE27411	18.3g/t Au , 1.14g/t Ag, 2.16g/t Te				
IE27415	4.06g/t Au , 9.69g/t Ag, 4.91g/t Te.				
IE27412	2.11g/t Au , 10.25g/t Ag, 4.12g/t Te.				

Elevated tellurium (Te) in the Guyer North rock chip results is similar to nearby gold deposits known to carry tellurides in their ores, for example the **Sunrise Dam**, **Wallaby** and **Jupiter** Gold Deposits.

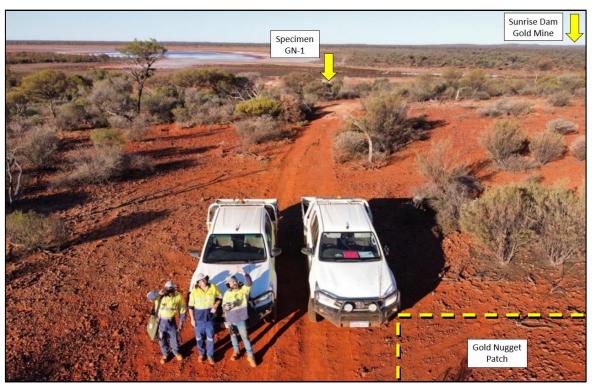


Figure 2 Site of specimen GN-1 on the east flank of the ridge at Guyer North, looking east.

Crushing and panning of samples from a strongly altered breccia outcrop on the eastern side of the ridge at Guyer North revealed microscopic gold. Specimens were analysed by Portable Spectral Services in their Perth laboratory using a Bruker M4 Tornado micro-XRF instrument. The samples were analysed using a $30\mu m$ XRF scan to determine their elemental make up and mineralogical composition.

The micro-XRF scans of a number of samples identified **ultra fine-grained gold**. The analysis confirmed the presence of gold within the altered breccia outcrop at Guyer North. Similarly, the **Sunrise Dam** gold deposit on the opposite shore of Lake Carey is also known to have microscopic gold as a component of its ores (Sung and Choi, 2010).

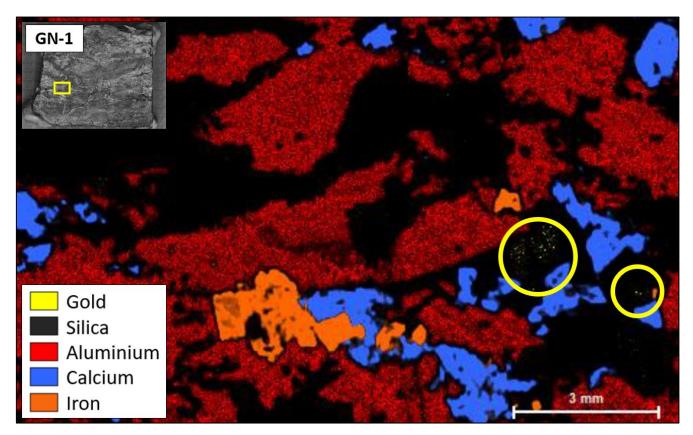


Figure 3 Micro-XRF element map of sample GN-1. Clusters of microscopic gold particles have been circled*.

Prospecting activity from contracted and Company staff has recovered gold nuggets within the **Guyer North** and **Guyer Central** prospects. The presence of gold nuggets in the surface alluvium supports the UFF+, rock chip and drilling results within these prospects.

Figure 4 Selection of gold nuggets and specimen stone recently recovered from Guyer North*.

^{*}Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Figure 5 Salt lake gold nuggets recovered from Guyer North with a gold fineness of ~97.5% (by pXRF)*.

A number of Salt Lake nuggets were recovered to the east of **Guyer Ridge**. The Salt Lake nuggets have been subjected to extreme chemical weathering and have been deeply etched. These nuggets are interpreted to indicate **a primary gold source** within the catchment draining area at **Guyer Ridge**.

During the previous 4 weeks over **100 nuggets** have been recovered, bringing the total to date to over **700 nuggets** found along the Guyer Trend. At Guyer North nuggets were found along the slopes of the ridge at Guyer North and a concentration of nuggets was recovered from the crest of the Guyer Ridge, associated with a shear zone and deformed quartz veins. The veins showed evidence of sulphides/boxworks after sulphides. The gold was angular and jagged, with some specimens still attached to quartz.

These nuggets are interpreted to be at their source on the crest of the ridge at Guyer North.

Guyer South

Ongoing mapping in the Guyer target area has located a number of old workings, shafts and scrapings. A number of these were located in the Granite Contact South prospect while others were found in the Guyer North and Guyer Central prospects. These features are used as prospectivity indicators that support the existing anomalous trends identified by surface sampling and drilling. Within the Guyer South prospect area 205 AC holes had been drilled for a total of 13,536m.

The results from the Guyer South AC drilling returned a number of significant intercepts. These results have identified anomalous gold hidden beneath transported cover related to a **palaeochannel system**.

Due to the broad line spacing of the AC drilling campaign any significant result requires follow up drill testing.

Table 3 Guyer South AC Drilling Significant Results									
Hole	Northing	Easting	ЕОН	Dip/Azi	Intercept				
FMAC0389	6,779,598	414,108	53	-60/270	4m at 0.18g/t Au from 36m				
FMAC0486	6,784,008	413,200	94	-60/270	4m at 0.10g/t Au from 88m				

^{*}Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

About Iceni Gold

Iceni Gold Limited is a Perth based exploration company that operates the 14 Mile Well Gold Project in the Laverton Greenstone Belt. Iceni Gold Limited (Iceni or the Company) now has 8 key high priority target areas within the 14 Mile Well project area. Iceni is actively exploring the target areas using geophysics, metal detecting, surface sampling, Ultrafine (UFF+) soil sampling, air core (AC) drilling and diamond drilling (DD). The ~800km² 14 Mile Well tenement package, the majority of which has never been subject to modern systematic geological investigation, is situated on the western shores of Lake Carey, ~ 50km from Laverton WA.

Competent Person Statement

The information in this announcement that relates to exploration results fairly represents information and supporting documentation prepared by Mr David Nixon, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Mr Nixon has a minimum of twenty-five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Nixon is a related party of the Company, being the Technical Director, and holds securities in the Company. Mr Nixon has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

For more information contact:

Brian Rodan

Executive Chairman Iceni Gold Limited

admin@icenigold.com.au +61 6458 4200 **David Nixon** Technical Director Iceni Gold Limited

+61 6458 4200

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria **JORC Code Explanation** Commentary Sampling • Nature and quality of sampling (e.g. cut channels, Air Core Drilling (AC) techniques random chips, or specific specialised industry AC is used to obtain drill chips which are sampled using a PVC sample spear, the standard measurement tools appropriate to the sample spoil is sampled in nominal 4m lengths, the entire sample (nominal 2kg) is minerals under investigation, such as down hole pulverised to produce a 30g charge for fire assay to analyse for Au. gamma sondes, or handheld XRF instruments, etc). The EOH sample is sampled as a 1m sample using a PVC sample spear, the These examples should not be taken as limiting the entire sample is pulverised to produce a 30g charge for fire assay to analyse for broad meaning of sampling. Include reference to measures taken to ensure Au and 0.3q is used for multielement analysis, where it is treated by four acid sample representivity and the appropriate mixed acid digest and measured using a mass spectrometer and optical emission calibration of any measurement tools or systems spectrometer. Another subsample is utilised for Short Wave Infra-Red (SWIR) used. spectrometry and subsequent analysis of the spectra is used to interpret • Aspects of the determination of mineralisation that mineralogy. are Material to the Public Report. Drill hole orientation is surveyed using compass and clinometer • In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse Air Core drilling contractor is Raglan Drilling circulation drilling was used to obtain 1 m samples Alteration and mineralisation have been identified by field geologists during routine from which 3 kg was pulverised to produce a 30 g sample inspection in the field and during logging of drill spoil. charge for fire assay'). In other cases more Rock Chip Sampling explanation may be required, such as where there Rock Chip sampling is used to obtain a point sample of outcrop or float. is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. Rock Chips are broken from outcrop or float using a steel Estwing geological submarine nodules) may warrant disclosure of hammer, the entire sample (nominal 0.5kg) is pulverised to produce a 30g charge detailed information. for fire assay to analyse for Au and 0.3g is used for multielement analysis, where it is treated by four acid mixed acid digest and measured using a mass spectrometer and optical emission spectrometer. Another subsample is utilised for Short Wave Infra-Red (SWIR) spectrometry and subsequent analysis of the spectra is used to interpret mineralogy. Sample locations are measured using handheld GPS Sampling is conducted by Company personnel Alteration and mineralisation have been identified by field geologists during routine sampling and logging in the field. Prospecting Surface prospecting is conducted by scanning the ground surface using metal detectors, commonly using a gridded search pattern.

Criteria	JORC Code Explanation	Commentary
		 Metal detectors in use are Minelab SDC2300, GPX6000 and GPZ7000, these models can handle the mineralised soils common within the district. The detectors are being operated by suitably experienced personnel. Recovered targets are located using handheld GPS receivers. Targets are weighed using digital scales with an accuracy of 0.1g. Targets may be analysed using pXRF to identify gold-silver ratio and the presence of pathfinder elements. Portable X-Ray Fluorescence Analysis (pXRF) pXRF analysis is conducted in the field on selected rock/mineral specimens using an Olympus Delta Handheld pXRF unit. The device measures a point <5mm in diameter on the surface of the rock/mineral specimen. pXRF results are considered useful for mineral identification, gold-silver ratio and guidance on the presence of pathfinder elements only. pXRF measurements are not a substitute for lab analyses. Micro X-Ray Fluorescence Analysis (μXRF) μXRF is a laboratory method using a Bruker M4 Tornado Plus μXRF instrument. The device measures XRF spectra from pixels ~30μm across, these pixels are scanned in sequence to form larger images for interpretation. μXRF analysis provides qualitative and quantitative data on elemental distributions within a specimen, which in turn is used to generate mineralogical distributions.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	AC Air Core drilling using blade and a face sampling down hole hammer is used to penetrate hard formations. Samples are drill spoil/chips and as such are not oriented. The drill hole collar orientation is surveyed using a compass and clinometer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Chip recoveries are estimated visually. Core recoveries are recorded by the field crew when sampling. Cyclone and buckets are cleaned at the end of each rod. Data does not indicate a relationship exists between recovery and grade or if bias has been introduced due to preferential loss/gain of fine/coarse material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	 AC Chip samples are logged at the rig site. The Reconnaissance AC method is not suitable to support Mineral Resource Estimations Samples are bagged at the rig site and transported from the rig site to a secure compound in Kalgoorlie. The entire length of the hole is logged (100% of relevant intersections are logged). Rock Chip

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock Chip samples are logged in the field at the sample site. Rock Chip grab sampling method is not suitable to support Mineral Resource Estimations Samples are bagged at the sample site and transported to a secure compound in Kalgoorlie. AC Air Core spoil is sampled using a PVC sample spear, the sample spoil is sampled in nominal 4m lengths, the entire sample (nominal 2kg) is pulverised to produce a 30g charge for fire assay to analyse for Au. The EOH sample is sampled as a 1m sample using a PVC sample spear, the entire sample is pulverised to produce a 30g charge for fire assay to analyse for Au and 0.3g is used for multielement analysis, where it is treated by four acid mixed acid digest and measured using a mass spectrometer and optical emission spectrometer. Another subsample is utilised for Short Wave Infra-Red (SWIR) spectrometry and subsequent analysis of the spectra is used to interpret mineralogy. Ex-Lab QA/QC procedures include insertion of standards, blanks and field duplicates. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure. The 4m composite sample size for Air Core is an acceptable industry standard and considered appropriate for the style of mineralisation being targeted and the grainsize of the rock being sampled. The remaining drill spoil is retained at the rig site so it can be used as a reference
		 and for check sampling. Rock Chip Rock Chips are broken from outcrop or float using a steel Estwing geological hammer, the entire sample (nominal 0.5kg) is pulverised to produce a 30g charge for fire assay to analyse for Au and 0.3g is used for multielement analysis, where it is treated by four acid mixed acid digest and measured using a mass spectrometer and optical emission spectrometer. Another subsample is utilised for Short Wave Infra-Red (SWIR) spectrometry and subsequent analysis of the spectra is used to interpret mineralogy. Ex-Lab QA/QC procedures include insertion of standards, blanks and field duplicates. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure. The 0.5kg sample size for a Rock Chip is an acceptable industry standard and considered appropriate for the style of mineralisation being targeted and the grainsize of the rock being sampled. pXRF Prior to sample measurements the pXRF is tested against a series of known standards.

Criteria	JORC Code Explanation	Comm	nentary
		μXRF	The on-board camera is used to accurately locate the device on the rock/mineral surface.
		μχιτι	In-Lab QA/QC procedures include insertion of standards, blanks, duplicates and
			repeat analyses are standard procedure.
		•	Specimens require minimal preparation; in this instance the sample has been cut with a diamond saw to reveal the internal structure of the sample.
Quality of	The nature, quality and appropriateness of the	AC	
assay data and	assaying and laboratory procedures used and whether the technique is considered partial or total.	•	The lab procedures for sample preparation, fusion and analysis are considered industry standard.
laboratory	For geophysical tools, spectrometers, handheld	•	Ex-Lab QA/QC procedures include insertion of standards, blanks and field
tests	XRF instruments, etc, the parameters used in		duplicates.
	determining the analysis including instrument make and model, reading times, calibrations factors	•	In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure.
	applied and their derivation, etc.		The 4m composite sample size for Air Core is an acceptable industry standard and
	Nature of quality control procedures adopted (e.g.		considered appropriate for the style of mineralisation being targeted and the
	standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy		grainsize of the rock being sampled.
	(i.e. lack of bias) and precision have been	•	The remaining drill spoil is retained at the rig site so it can be used as a reference and for check sampling.
	established.	•	QA/QC samples are behaving within acceptable thresholds.
		Rock (·
		•	The lab procedures for sample preparation, fusion and analysis are considered industry standard.
		•	Ex-Lab QA/QC procedures include insertion of standards, blanks and field duplicates.
		•	In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure.
		•	The nominal 0.5kg sample size for a rock chip sample is an acceptable industry
			standard and considered appropriate for the style of mineralisation being targeted
			and the grainsize of the rock being sampled. QA/QC samples are behaving within acceptable thresholds.
		pXRF	and a sumples and something minimal acceptance in contract.
		•	Measurements in the field using the pXRF are point values on the surface of a sample only and are not subject to the same high standards as lab analyses.
		•	As such pXRF results are considered to be indicative and used for guidance only.
		μXRF	
		•	μXRF analysis is conducted by Portable XRF Services Pty Ltd (trading as Portable Spectral Services) in their Perth laboratory.
		•	μXRF is a laboratory method using a Bruker M4 Tornado Plus μXRF instrument.
		•	The device measures XRF spectra from pixels ~30µm across, these pixels are
			scanned in sequence to form larger images for interpretation.
		•	μXRF analysis provides qualitative and quantitative data on elemental distributions within a specimen, which in turn is used to generate mineralogical distributions.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are verified by field staff then validated by the Senior Geologist or Exploration Manager. Bottom of hole chips and reference drill spoil is physically inspected to validate significant intersections and logging. Logging data is entered digitally, using standard software with dropdown lists, it is sent to database administrators for incorporation in the digital database Assay data is not adjusted. Rock Chips Significant results are verified by field staff then validated by the Senior Geologist or Exploration Manager. Broken outcrop is physically inspected to validate significant results and logging. Logging data is entered digitally, using standard software with dropdown lists, it is sent to database administrators for incorporation in the digital database Assay data is not adjusted. Prospecting Recovered targets are verified by the Senior Geologist or Exploration Manager. The recovery sites are physically inspected to validate the location of the recoveries and to put the finds into geological context.
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 In the field data points are located using Garmin GPSMAP64csxTM handsets with a nominal accuracy is 3m. No mineral resource estimations form part of this announcement. Grid system is GDA94 zone 51 The project has a nominal RL of 440m, a more accurate DTM, provided by geophysical contractors, is used for topographic control.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sampling is conducted in nominal 4m intervals. All Air Core is sampled. The data spacing and distribution is sufficient to establish the degree of geological and grade continuity but it is not appropriate for Mineral Resource and Ore Reserve estimations. Nominal 4m sample composites, with 1m sample at EOH. Rock Chips Rock Chip samples are point samples and are not appropriate for Mineral Resource and Ore Reserve estimations.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	The orientation of sampling is considered appropriate with respect to the structures being tested.

Criteria	JORC Code Explanation	Commentary
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Bias introduced by drilling orientation is insignificant due to the depth of cover and lower penetration of residual bedrock. Back Chies.
		Rock Chips
		Rock Chip samples are biased to the geometry of the available outcrop.
Sample	The measures taken to ensure sample security.	AC & Rock Chips
security		 Samples within calico bags are stored in sealed polyweave bags within a larger Bulka bag, the Bulka bags are secured on pallets for transport
		Pallets of samples are transported by truck to the yard in Kalgoorlie
		 The yard in Kalgoorlie is enclosed within a secured and locked compound with a monitored security system that includes internal and external video recording.
Audits or	The results of any audits or reviews of sampling	AC & Rock Chips
reviews	techniques and data.	The sampling methods being used are industry standard practice.
		QAQC Standard samples are OREAS Super CRMs® for Au and Multi-elements.
		 Samples are submitted to ALS Laboratory in Perth for sample preparation and analysis, this lab is ISO/IEC 17025:2017 and ISO 9001:2015 accredited.
		The lab is subject to routine and random inspections.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	J	ORC Code Explanation	Commentary									
Mineral	Type, reference name/number, location and								on is located within Western Australia.			
tenement and land tenure		ownership including agreements or material issues with third parties such as joint ventures,			Act	ivity: Teneme	nt Summa	ry				
status		partnerships, overriding royalties, native title interests, historical sites, wilderness or national		Prospect	Tenement	Grant Date	Status	Owner				
	•	park and environmental settings. The security of the tenure held at the time of		Guyer	E39/1999	4/7/2018	Live	Guyer Well Gold Pty Ltd				
	reporting along with any known impediments to obtaining a licence to operate in the area.		14 Mile Well	Gold Pty Ltd & G	Guyer Well Gold of Iceni Gold	•	e wholly owned subsidiaries					
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	The area bein previous exploring Historical exportant organisations.	g tested by the exprers. ploration work I The reports and	ploration camp has been col results are ava	paign has b mpleted by illable in the	held but under-explored for Au. een inadequately drill tested by y numerous individuals and e public domain and all relevant gists Report dated March 2021				
				which is include	ded in the Prospe	ctus dated 3 M	arch 2021.					
Geology	•	Deposit type, geological setting and style of mineralisation.	•	Exploration is	targeting Orogen	ic Gold and Int	rusion Rela	ted Gold deposit styles.				

Criteria	JORC Code Explanation	Comme	entary			
					Summary of Pro	spects
			Prospect	Host	Deposit Style	Associations
			Guyer	Andesite – BIF - Monzogranite	Orogenic	Quartz veining, alteration, sulphides
			Guyei	Monzogranite - Syenite	Intrusion Related	Quartz veining, alteration, sulphides
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 		AC drilling an Appendix.	d Rock Chip inforr	nation and results	s are included in the attached Data
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Rock CI	Anomalous/R Maximum/mir Intercepts ma Higher grade Metal equival hips Rock chips ar Anomalous/R Maximum/mir Rock chips ar	eporting threshold nimum grade trunc y include 2m leng	i: 0.10g/t Au cations are not use ths of internal dilu ed separately if the reported. and are not average i: 0.10g/t Au cations are not use and do not contain	ition ey exceed > 3x the interval grade ged

Criteria	JORC Code Explanation	Commentary					
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 AC Assay intercepts are downhole length, true width not known. Rock Chips Rock chips are point samples, relationships with mineralised widths are not known. 					
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 Plan included in the announcement showing location of Guyer Central AC drilling and Au anomalous drilling results relative to rock chip results. Table of significant AC results included here and within the announcement. Guyer South AC Drilling Significant Results					
		Hole	Northing	Easting	ЕОН	Dip/Azi	Intercept
		FMAC0389	6779598	414108	53	-60/270	4m at 0.18g/t Au from 36m
		FMAC0486	6784008	413200	94	-60/270	4m at 0.10g/t Au from 88m
Balanced	Where comprehensive reporting of all Exploration	• AC dri	lling and Roc	k Chin info	mation a	nd results a	re provided in the attached Data
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	● AC dri Appen	•	k Chip infor	mation a	nd results a	re provided in the attached Data

Criteria	JORC Code Explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Geological interpretation and review included in prospectus dated 3 Mar 2021. 3km long gold target at Guyer in announcement dated 5 Nov 2021. Exploration at Guyer included in announcement dated 1 Dec 2021. Guyer Well target area drilling commences in announcement dated 25 Feb 2022. Exploration at Guyer included in announcement dated 28 Feb 2022. Exploration at Guyer included in announcement dated 4 May 2022. UFF anomaly at Guyer included in announcement dated 5 July 2022. Included in Noosa Mining Conference presentation dated 20 July 2022. Significant gold intersection at Everleigh Well in announcement dated 5 Oct 2022. Recent nugget finds at North Guyer in announcement dated 21 Nov 2022. Recent nugget finds at North Guyer in presentation dated 24 Nov 2022. Included in AGM presentation in announcement dated 35 Nov 2022. Included in Exploration Update presentation dated 28 Dec 2022. Drill results extend gold mineralisation at Guyer in announcement dated 19 Jan 2023. Gold nugget anomaly extends to 5kms in announcement dated 9 Mar 2023. High-grade rock chip assay results have returned within the Guyer target area, peak assay values include: 136g/t Au, 126g/t Au, 67.4g/t Au, 18.3g/t Au and 15.5g/t Au. Gold bearing rock chips and further gold nuggets have been recovered within the Guyer North prospect supporting the existing UFF, rock chip and AC drilling anomalies. A selection of the gold nuggets were analysed by pXRF and found to have a gold fineness of ~97.5% Au. A strongly altered outcrop was located east of the Guyer North ridge, samples were crushed and panned and ultra fine gold was observed. Samples from the altered outcrop were sent for µXRF laboratory analysis by Portable Spectral Services, gold was identified in a number of samples. This result confirms gold is present within outcrop at that location. The Guyer North pr

Criteria	JORC Code Explanation	Commenta	ry			
				Table of Visual Ex	ploration Results	
		Location	Minerals	Nature of Occurrence	Abundance	Assay Timing
		Guyer North	Gold	Nuggets in surface alluvium	+100 nuggets on 4km trend Au fineness of ~97.5% (pXRF)	Not to be assayed
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	visu sho assa repo ava	al identificated and identificated and identification and identificati	ation, estimates of mine be considered a proxy or are required to determine company will update the m	ploration results, the comparation results, the comparation results, the comparation of substitute for laboratory the size and grade of any narket when laboratory and	pXRF measurements analyses. Laboratory visible mineralisation

DATA APPENDIX - AC Significant Results and Rock Chip Geochemistry Results

				AC Drilling Significant Results	
Hole ID	Easting	Northing	EOH m	Au Assay Results	EOH Ag Assay Results
FMAC0387	414018	6779589	89	No Significant Assay	No Significant Assay
FMAC0388	414049	6779598	94	No Significant Assay	No Significant Assay
FMAC0389	414108	6779598	53	4m at 0.18g/t Au from 36-40m	1m at 0.16g/t Ag from 52-53m
FMAC0390	414152	6779599	67	No Significant Assay	No Significant Assay
FMAC0391	414201	6779601	47	No Significant Assay	No Significant Assay
FMAC0392	414247	6779596	42	No Significant Assay	No Significant Assay
FMAC0393	414348	6779598	124	No Significant Assay	1m at 0.11g/t Ag from 118-119m
FMAC0394	414403	6779590	109	No Significant Assay	No Significant Assay
FMAC0395	414455	6779599	102	No Significant Assay	No Significant Assay
FMAC0396	414848	6779596	80	No Significant Assay	1m at 0.13g/t Ag from 79-80m
FMAC0397	414903	6779601	70	No Significant Assay	1m at 0.10g/t Ag from 69-70m
FMAC0398	414952	6779604	69	No Significant Assay	No Significant Assay
FMAC0399	415001	6779605	74	No Significant Assay	No Significant Assay
FMAC0400	415048	6779598	40	No Significant Assay	1m at 0.41g/t Ag from 39-40m
FMAC0400 FMAC0401	415048	6779599	72	No Significant Assay	1m at 0.41g/t Ag from 71-72m
FMAC0401 FMAC0402	415052	6779599	92	No Significant Assay	1m at 0.19g/t Ag from 71-72m 1m at 0.54g/t Ag from 91-92m
			72		
FMAC0403 FMAC0404	415099	6779603		No Significant Assay	No Significant Assay
	415149	6779602	54	No Significant Assay	No Significant Assay
FMAC0405	415195	6779604	49	No Significant Assay	No Significant Assay
FMAC0406	414001	6778806	75	No Significant Assay	No Significant Assay
FMAC0407	414050	6778797	61	No Significant Assay	No Significant Assay
FMAC0408	414101	6778801	67	No Significant Assay	No Significant Assay
FMAC0409	414190	6778808	105	No Significant Assay	No Significant Assay
FMAC0410	414202	6778798	38	No Significant Assay	No Significant Assay
FMAC0411	414148	6778796	24	No Significant Assay	No Significant Assay
FMAC0412	414156	6778797	95	No Significant Assay	No Significant Assay
FMAC0413	414248	6778803	91	No Significant Assay	No Significant Assay
FMAC0414	414301	6778801	90	No Significant Assay	No Significant Assay
FMAC0415	414346	6778803	83	No Significant Assay	No Significant Assay
FMAC0416	414400	6778803	71	No Significant Assay	No Significant Assay
FMAC0417	414451	6778800	79	No Significant Assay	No Significant Assay
FMAC0418	414503	6778802	96	No Significant Assay	1m at 0.12g/t Ag from 95-96m
FMAC0419	414551	6778800	101	No Significant Assay	No Significant Assay
FMAC0420	414602	6778801	111	No Significant Assay	1m at 0.20g/t Ag from 110-111m
FMAC0421	414655	6778802	105	No Significant Assay	1m at 0.10g/t Ag from 104-105m
FMAC0422	414701	6778799	82	No Significant Assay	1m at 0.14g/t Ag from 81-82m
FMAC0423	414753	6778805	97	No Significant Assay	1m at 0.10g/t Ag from 96-97m
FMAC0424	414802	6778802	96	No Significant Assay	No Significant Assay
FMAC0425	414854	6778799	93	No Significant Assay	No Significant Assay
FMAC0426	414906	6778805	81	No Significant Assay	No Significant Assay
FMAC0427	414953	6778800	82	No Significant Assay	No Significant Assay
FMAC0428	415003	6778803	81	No Significant Assay	No Significant Assay
FMAC0429	415046	6778801	84	No Significant Assay	No Significant Assay
FMAC0430	415104	6778801	84	No Significant Assay	No Significant Assay
FMAC0431	415151	6778800	94	No Significant Assay	No Significant Assay
FMAC0432	415205	6778803	90	No Significant Assay	No Significant Assay
FMAC0433	415250	6778803	87	No Significant Assay	No Significant Assay
FMAC0434	415299	6778802	87	No Significant Assay	No Significant Assay

FMAC0435	415356	6778802	87	No Significant Assay	No Significant Assay
FMAC0436	415403	6778800	90	No Significant Assay	No Significant Assay
	.=0 .00			AC Drilling Significant Results	
Hole ID	Easting	Northing	EOH m	Au Assay Results	EOH Ag Assay Results
FMAC0437	415449	6778801	57	No Significant Assay	No Significant Assay
FMAC0438	415499	6778801	54	No Significant Assay	No Significant Assay
FMAC0439	414549	6779603	58	No Significant Assay	No Significant Assay
FMAC0440	414604	6779595	59	No Significant Assay	No Significant Assay
FMAC0441	414302	6779601	80	No Significant Assay	No Significant Assay
FMAC0442	414501	6779603	75	No Significant Assay	No Significant Assay
FMAC0443	414549	6779603	90	No Significant Assay	No Significant Assay
FMAC0444	414604	6779595	84	No Significant Assay	No Significant Assay
FMAC0445	414654	6779607	49	No Significant Assay	1m at 0.26g/t Ag from 48-49m
FMAC0446	414705	6779603	86	No Significant Assay	No Significant Assay
FMAC0447	414753	6779597	80	No Significant Assay	No Significant Assay
FMAC0448	414799	6779596	87	No Significant Assay	No Significant Assay
FMAC0449	415255	6779605	26	No Significant Assay	No Significant Assay
FMAC0450	415304	6779606	34	No Significant Assay	No Significant Assay
FMAC0451	415353	6779600	19	No Significant Assay	No Significant Assay
FMAC0452	415405	6779599	31	No Significant Assay	No Significant Assay
FMAC0453	413604	6782801	82	No Significant Assay	No Significant Assay
FMAC0454	413653	6782795	90	No Significant Assay	No Significant Assay
FMAC0455	413704	6782801	78	No Significant Assay	No Significant Assay
FMAC0456	413755	6782793	84	No Significant Assay	No Significant Assay
FMAC0457	413802	6782796	86	No Significant Assay	No Significant Assay
FMAC0458	413856	6782796	96	No Significant Assay	1m at 0.13g/t Ag from 95-96m
FMAC0459	413906	6782801	76	No Significant Assay	No Significant Assay
FMAC0460	413955	6782802	68	No Significant Assay	No Significant Assay
FMAC0461	414007	6782802	54	No Significant Assay	No Significant Assay
FMAC0462	414052	6782792	62	No Significant Assay	No Significant Assay
FMAC0463	414105	6782801	58	No Significant Assay	1m at 0.12g/t Ag from 57-58m
FMAC0464	414153	6782797	81	No Significant Assay	No Significant Assay
FMAC0465	414202	6782797	87	No Significant Assay	1m at 0.11g/t Ag from 86-87m
FMAC0466	414251	6782800	77	No Significant Assay	No Significant Assay
FMAC0467	414306	6782801	69	No Significant Assay	No Significant Assay
FMAC0468	414352	6782800	90	No Significant Assay	No Significant Assay
FMAC0469	414406	6782804	58	No Significant Assay	No Significant Assay
FMAC0470	414455	6782804	78	No Significant Assay	No Significant Assay
FMAC0471	414505	6782805	70	No Significant Assay	No Significant Assay
FMAC0472	414549	6782802	82	No Significant Assay	No Significant Assay
FMAC0473	414602	6782798	64	No Significant Assay	No Significant Assay
FMAC0474	414653	6782795	25	No Significant Assay	No Significant Assay
FMAC0475	414701	6782801	26	No Significant Assay	No Significant Assay
FMAC0476	414749	6782800	24	No Significant Assay	No Significant Assay
FMAC0477	414801	6782797	28	No Significant Assay	No Significant Assay
FMAC0478	414859	6782797	35	No Significant Assay	No Significant Assay
FMAC0479	414903	6782804	30	No Significant Assay	No Significant Assay
FMAC0480	414951	6782802	49	No Significant Assay	No Significant Assay
FMAC0481	415000	6782800	63	No Significant Assay	No Significant Assay
FMAC0482	415053	6782801	69	No Significant Assay	No Significant Assay
FMAC0483	415104	6782798	73	No Significant Assay	No Significant Assay
FMAC0484	415152	6782799	69	No Significant Assay	No Significant Assay

FMAC0485	415201	6782798	62	No Significant Assay	No Significant Assay
FMAC0486	413200	6784008	94	4m at 0.10g/t Au from 88-92m	1m at 0.10g/t Ag from 93-94m
11111100100	.13200	0701000	J .	AC Drilling Significant Results	1 de 3.1238/ e 7.8 33 3
Hole ID	Easting	Northing	EOH m	Au Assay Results	EOH Ag Assay Results
FMAC0487	413250	6784002	84	No Significant Assay	No Significant Assay
FMAC0488	413297	6784004	73	No Significant Assay	No Significant Assay
FMAC0489	413351	6783995	67	No Significant Assay	No Significant Assay
FMAC0490	413398	6783998	69	No Significant Assay	No Significant Assay
FMAC0491	413449	6783994	66	No Significant Assay	No Significant Assay
FMAC0492	413495	6783997	76	No Significant Assay	No Significant Assay
FMAC0493	413550	6784003	82	No Significant Assay	No Significant Assay
FMAC0494	413599	6784010	72	No Significant Assay	No Significant Assay
FMAC0495	413651	6784005	86	No Significant Assay	No Significant Assay
FMAC0496	413700	6783998	75	No Significant Assay	No Significant Assay
FMAC0497	413746	6783994	72	No Significant Assay	No Significant Assay
FMAC0498	413802	6784000	72	No Significant Assay	No Significant Assay
FMAC0499	413853	6784001	78	No Significant Assay	No Significant Assay
FMAC0500	413901	6784003	74	No Significant Assay	No Significant Assay
FMAC0501	413949	6784003	72	No Significant Assay	No Significant Assay
FMAC0502	414050	6783999	72	No Significant Assay	No Significant Assay
FMAC0503	414097	6783998	49	No Significant Assay	No Significant Assay
FMAC0504	414151	6784002	69	No Significant Assay	1m at 0.56g/t Ag from 69-69m
FMAC0505	414206	6784002	47	No Significant Assay	1m at 0.10g/t Ag from 46-47m
FMAC0506	414249	6783999	42	No Significant Assay	No Significant Assay
FMAC0507	414297	6784000	49	No Significant Assay	No Significant Assay
FMAC0508	414349	6784001	39	No Significant Assay	1m at 0.16g/t Ag from 38-39m
FMAC0509	414397	6784005	50	No Significant Assay	No Significant Assay
FMAC0510	414447	6784000	23	No Significant Assay	No Significant Assay
FMAC0511	414503	6784001	23	No Significant Assay	No Significant Assay
FMAC0512	414551	6784002	41	No Significant Assay	No Significant Assay
FMAC0513	414604	6784005	35	No Significant Assay	No Significant Assay
FMAC0514	414649	6783998	27	No Significant Assay	No Significant Assay
FMAC0515	414705	6783995	47	No Significant Assay	No Significant Assay
FMAC0516	414752	6784002	76	No Significant Assay	No Significant Assay
FMAC0517	414798	6784001	53	No Significant Assay	No Significant Assay
FMAC0518	413998	6783998	63	No Significant Assay	No Significant Assay
FMAC0519	413253	6784396	63	No Significant Assay	No Significant Assay
FMAC0520	413297	6784402	72	No Significant Assay	No Significant Assay
FMAC0521	413354	6784401	75	No Significant Assay	No Significant Assay
FMAC0522	413398	6784397	66	No Significant Assay	No Significant Assay
FMAC0523	413449	6784400	72	No Significant Assay	No Significant Assay
FMAC0524	413501	6784402	71	No Significant Assay	No Significant Assay
FMAC0525	413552	6784400	81	No Significant Assay	No Significant Assay
FMAC0526	413604	6784405	72	No Significant Assay	No Significant Assay
FMAC0527	413653	6784405	77	No Significant Assay	No Significant Assay
FMAC0528	413705	6784401	75	No Significant Assay	No Significant Assay
FMAC0529	413753	6784400	84	No Significant Assay	No Significant Assay
FMAC0530	413799	6784401	100	No Significant Assay	No Significant Assay
FMAC0531	413855	6784395	83	No Significant Assay	No Significant Assay
FMAC0532	413892	6784402	70	No Significant Assay	No Significant Assay
FMAC0533	413951	6784396	54	No Significant Assay	No Significant Assay
FMAC0534	414007	6784402	56	No Significant Assay	No Significant Assay

FMAC0535	414048	6784393	47	No Significant Assay	No Significant Assay
FMAC0536	414104	6784397	53	No Significant Assay	No Significant Assay
				AC Drilling Significant Results	
Hole ID	Easting	Northing	EOH m	Au Assay Results	EOH Ag Assay Results
FMAC0537	414152	6784405	59	No Significant Assay	No Significant Assay
FMAC0538	414202	6784403	33	No Significant Assay	No Significant Assay
FMAC0539	414261	6784396	17	No Significant Assay	1m at 0.11g/t Ag from 16-17m
FMAC0540	414301	6784406	23	No Significant Assay	No Significant Assay
FMAC0541	414350	6784403	22	No Significant Assay	No Significant Assay
FMAC0542	414399	6784403	51	No Significant Assay	No Significant Assay
FMAC0543	414452	6784405	27	No Significant Assay	1m at 0.16g/t Ag from 26-27m
FMAC0544	414499	6784400	61	No Significant Assay	No Significant Assay
FMAC0545	414549	6784397	33	No Significant Assay	No Significant Assay
FMAC0546	414600	6784404	54	No Significant Assay	No Significant Assay
FMAC0547	414653	6784404	57	No Significant Assay	No Significant Assay
FMAC0548	414698	6784401	55	No Significant Assay	No Significant Assay
FMAC0549	414749	6784400	57	No Significant Assay	No Significant Assay
FMAC0550	414799	6784398	52	No Significant Assay	No Significant Assay
FMAC0551	414848	6784401	67	No Significant Assay	No Significant Assay
FMAC0563	413498	6782000	71	No Significant Assay	No Significant Assay
FMAC0564	413553	6781996	65	No Significant Assay	No Significant Assay
FMAC0565	413601	6782001	72	No Significant Assay	No Significant Assay
FMAC0566	413650	6782005	59	No Significant Assay	No Significant Assay
FMAC0567	413699	6782005	62	No Significant Assay	No Significant Assay
FMAC0568	413751	6782002	75	No Significant Assay	No Significant Assay
FMAC0569	413800	6781995	60	No Significant Assay	No Significant Assay
FMAC0570	413845	6782003	59	No Significant Assay	No Significant Assay
FMAC0571	413901	6782004	60	No Significant Assay	No Significant Assay
FMAC0572	413948	6781999	56	No Significant Assay	No Significant Assay
FMAC0573	414001	6782000	77	No Significant Assay	No Significant Assay
FMAC0574	414050	6782004	64	No Significant Assay	1m at 0.15g/t Ag from 63-64m
FMAC0575	414098	6781997	66	No Significant Assay	No Significant Assay
FMAC0576	414151	6781999	45	No Significant Assay	No Significant Assay
FMAC0577	414200	6782001	66	No Significant Assay	1m at 0.19g/t Ag from 65-66m
FMAC0578	414252	6782002	88	No Significant Assay	No Significant Assay
FMAC0579	414304	6782000	81	No Significant Assay	1m at 0.14g/t Ag from 80-81m
FMAC0580	414357	6781999	93	No Significant Assay	No Significant Assay
FMAC0581	414402	6782005	75	No Significant Assay	No Significant Assay
FMAC0582	414457	6782001	75	No Significant Assay	No Significant Assay
FMAC0583	414502	6781999	66	No Significant Assay	No Significant Assay
FMAC0584	414554	6781997	77	No Significant Assay	No Significant Assay
FMAC0585	414607	6782003	66	No Significant Assay	No Significant Assay
FMAC0586	414652	6782002	63	No Significant Assay	No Significant Assay
FMAC0587	414703	6782002	75	No Significant Assay	No Significant Assay
FMAC0588	414749	6782004	63	No Significant Assay	No Significant Assay
FMAC0589	414801	6782003	56	No Significant Assay	No Significant Assay
FMAC0590	414856	6782001	23	No Significant Assay	No Significant Assay
FMAC0591	414902	6781997	20	No Significant Assay	No Significant Assay
FMAC0592	414949	6782002	21	No Significant Assay	No Significant Assay
FMAC0593	415002	6782002	36	No Significant Assay	No Significant Assay
FMAC0594	415051	6782005	37	No Significant Assay	No Significant Assay
FMAC0595	415100	6782001	34	No Significant Assay	No Significant Assay

FMAC0615	414270	6784402	21	No Significant Assay	No Significant Assay
FMAC0616	414058	6784001	55	No Significant Assay	No Significant Assay

				AC Drilling Significant Results	
Hole ID	Easting	Northing	EOH m	Au Assay Results	EOH Ag Assay Results
FMAC0617	413555	6782784	70	No Significant Assay	No Significant Assay
FMAC0618	414205	6779606	85	No Significant Assay	No Significant Assay
FMAC0619	414253	6779598	74	No Significant Assay	No Significant Assay
FMAC0620	414661	6779605	91	No Significant Assay	1m at 0.27g/t Ag from 90-91m
FMAC0622	413251	6784397	60	No Significant Assay	No Significant Assay

					Rock Ch	ip Signifi	cant Res	ults						
			Au	Ag	As	Bi	Cu	Mo	Ni	Pb	S	Sb	Te	Zn
Sample ID	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
C21226	406574	6791136	0.225	0.05	0.2	0.01	1.7	3.12	1.4	1	-100	0.23	0.39	5
C21234	408163	6791097	1.13	0.05	0.7	0.62	2.3	2.46	2.3	0.8	100	0.06	2.33	18
C21235	408165	6791097	67.4	7.38	0.2	4.13	1.6	2.51	1.2	1	100	0.06	-0.05	2
C21243	407730	6792406	0.734	0.08	-0.2	0.22	3.6	0.94	5.4	5.2	200	0.16	-0.05	10
C21381	413760	6785190	4.08	0.06	5.2	0.26	5.8	1.76	2.7	1.1	100	0.06	-0.05	5
C21382	413769	6785195	2.29	0.09	6.4	0.58	4.6	2.85	2.5	1.1	200	0.08	0.09	4
C21383	413766	6785186	0.257	-0.01	4.7	0.15	3.8	2.67	2.2	1.4	200	0.06	-0.05	-2
C21385	413760	6785166	0.124	0.26	13.8	0.12	6.2	2.18	3.7	2.2	300	0.12	-0.05	5
IE01014	410773	6783488	1.635	0.14	1.1	1.68	5.7	2.84	2.7	5.9	100	0.07	1.4	2
IE01017	410793	6783487	0.173	0.05	1.3	4.54	3.9	0.43	6.3	4.3	100	0.12	3.82	9
IE01018	410794	6783483	15.45	2.34	5.3	20.5	7.1	2.47	5.4	12.8	100	0.26	20.7	7
IE12283	406342	6791325	0.101	0.02	4.9	0.17	16.8	1.27	51.8	6.2	500	0.26	0.06	11
IE12457	413864	6785172	0.106	0.19	205	0.05	19.2	5.33	24.6	8.4	600	8.84	0.22	77
IE12458	413863	6785184	0.241	0.43	176	0.14	17.4	5.74	23.7	9.5	700	11.45	0.07	39
IE12460	413862	6785187	0.14	0.34	154	0.06	10	5.34	10.2	6.7	600	6.26	0.17	19
IE12485	413760	6785197	5.16	0.02	13	0.01	7.9	1.91	6.8	1.9	800	0.07	-0.05	13
IE12955	410694	6788065	2.41	1.74	417	0.11	119	0.86	135	6.5	37400	0.41	0.92	76
IE14257	406617	6791097	0.187	0.05	3	0.05	6.9	1.05	10.1	6.2	100	0.36	0.64	24
IE14424	413726	6786266	0.173	0.36	149.5	2.39	37.5	7.3	24.3	76.2	700	16.4	0.52	87
IE14426	413723	6786269	0.373	0.55	146	2.57	62.7	6.6	32.3	161	600	15.3	0.46	122
IE15378	408164	6791098	1.31	0.07	2.5	1.44	8.6	0.46	2.5	1.3	100	-0.05	3.29	73
IE15379	408164	6791099	3.22	0.91	0.2	0.75	1	0.61	1.1	1.2	-100	-0.05	0.6	3
IE15381	408164	6791099	126	3.73	-0.2	0.12	1	0.59	1.6	0.9	-100	-0.05	0.49	4
IE15963	413787	6786044	0.167	1.58	11.6	0.16	14.2	7.16	9	12.4	400	2.49	0.05	17
IE15981	414160	6785514	0.126	0.04	52.2	0.29	248	1.93	15.4	2.5	500	0.76	0.23	132
IE15989	413954	6785742	0.115	2.97	127	11.1	685	7.22	62.7	10.3	800	3.08	3.78	73
IE24962	411518	6793064	0.176	0.06	8.2	0.85	373	3.12	81.9	4.5	100	0.1	0.31	232
IE25002	413703	6785197	0.334	0.06	12	0.01	1.8	1.38	2	2	100	0.07	-0.05	2
IE25431	403570	6793603	10.35	3.83	1	0.26	7.8	3.64	4.3	8.8	100	0.2	17.2	8
IE25432	403659	6793624	0.273	0.25	2.8	0.12	40.7	0.74	49.2	4.6	200	0.18	0.08	35
IE25440	403203	6793719	0.637	0.27	0.5	0.2	13	1.61	2.8	0.6	-100	0.08	0.17	5
IE25444	403218	6793757	25.8	3.81	1.1	2.8	265	1.32	3.2	2.8	3000	0.07	3.17	36
IE25446	403172	6793720	0.232	0.06	2.4	0.1	31.2	0.8	13.5	1.9	900	0.08	0.05	36
IE25447	403196	6793772	0.181	0.03	0.8	0.06	6.8	1.35	9.1	2.5	100	0.09	-0.05	107
IE25460	403170	6793805	0.191	0.02	0.5	0.04	10.2	0.92	2.5	2.2	600	0.07	-0.05	22
IE25739	408151	6791102	0.162	0.07	-0.2	0.04	4.3	1.14	7.2	1.4	-100	0.09	0.08	10
IE26349	409035	6780857	0.318	0.01	3.8	0.04	35.6	2.52	26.7	12.4	1400	0.08	-0.05	137
IE26350	409033	6780860	0.359	0.02	11	0.02	38.2	1.7	31.5	10.7	1400	0.05	-0.05	147
IE26579	418949	6788229	0.237	1.22	0.3	17.9	4.7	61.4	1.5	20.1	200	0.05	1.15	-2
IE26597	407394	6779038	0.155	0.02	0.8	0.42	19.3	0.69	8.4	5.9	200	0.1	-0.05	14
IE26668	419409	6786322	0.226	0.08	1.5	0.34	24.7	2.21	5	0.6	200	0.14	0.72	21
IE26683	418749	6788223	0.265	0.41	1.3	9.67	13.6	23.7	4.6	151.5	500	0.13	1.82	15
IE26730	418570	6788375	0.362	0.68	0.9	6.27	11.2	28.5	7.4	13.7	500	0.44	1.07	17
IE27055	418757	6786220	0.208	0.17	1	11.15	147	16.3	13.8	4.6	600	0.33	4.59	18
IE27057	419363	6786450	1.575	0.09	1.1	0.02	29.3	2.71	5.5	1.6	100	0.19	0.18	43
IE27159	409034	6780852	0.543	0.05	7	0.07	37.5	1.43	36.8	11	1500	0.05	0.1	194

IE27168	403220	6793752	15.1	0.8	-0.2	0.98	11.4	3.99	3.1	0.5	100	0.06	0.4	5
IE27169	403198	6793767	0.598	0.06	0.6	2.14	48.9	2.07	1.9	2.1	300	-0.05	1.8	31
IE27173	401554	6794045	0.186	0.1	0.9	0.27	139	3.57	4.2	-0.5	100	0.06	0.21	19
IE27174	401574	6794066	0.282	0.81	2.3	2.43	357	3.51	12.7	0.8	300	0.12	2.02	95
IE27285	411489	6793182	3.71	0.95	13.4	0.98	3830	2.09	421	2	300	0.11	2.49	410
IE27301	413755	6785183	0.816	0.04	2.9	0.03	5.4	2.38	1.6	0.8	-100	0.06	0.05	3
E27302	413763	6785192	0.704	0.13	59.2	0.09	24.3	2.85	22.2	9.5	300	0.22	0.15	33
E27322	410788	6783487	9.72	1.06	11.4	32.8	16.3	2.34	4.8	21.9	300	0.35	39.8	5
E27411	412071	6792342	18.25	1.14	23.9	3.43	3660	1.6	35.6	1.9	100	0.11	2.16	634
E27412	412072	6792344	2.11	10.25	40.3	6.59	2240	2.02	23.5	4.7	1600	0.19	4.12	1275
IE27413	412069	6792353	0.282	3.92	84.6	2.38	1455	1.45	43.1	10.1	1200	1.38	0.54	1590
IE27415	412071	6792341	4.06	9.69	4.1	6.51	3450	2.34	37	2.4	800	0.11	4.91	615
IE27416	412073	6792346	0.347	0.71	5.7	4.92	359	2.41	23.5	4.9	600	0.09	1.91	265
E29947	410680	6783328	0.112	-0.01	0.4	0.12	2	1.85	3.6	4.7	-100	-0.05	3.08	2
E29955	410800	6782829	0.12	-0.01	-0.2	0.02	0.9	1.66	2.8	-0.5	-100	-0.05	-0.05	2
IE29965	411001	6782382	135.5	3.03	-0.2	0.04	1.7	1.39	3	-0.5	-100	-0.05	0.15	2
E29966	410999	6782382	0.498	-0.01	1.1	0.32	10.5	2.05	12	1	400	0.13	0.45	8
MCA000392	409720	6779168	0.5	0.22	2.2	2.23	34.3	1.96	5.8	8.5	300	0.05	0.24	35
MCA000394	410769	6783494	0.204	0.09	1.4	1.64	6.6	2.82	2.3	2.4	-100	0.08	3.65	-2
MCA000398	410770	6783499	0.189	0.1	0.9	0.29	428	3.34	1.7	6	100	0.38	0.22	7
MCA000472	405745	6791172	1.345	0.09	0.2	0.03	3.9	2.07	2.7	1	300	0.14	-0.05	3
JP198	413759	6785192	1.3	0.012	2.93	0.054	1.21	2.18	1.22	0.9	-100	0.03	0.016	2.9
JP201	413758	6785090	0.29	0.061	3.15	0.048	4.13	4.46	4.86	1.63	300	0.16	0.012	5.6
LYM16697	411565	6793182	0.429	0.06	0.5	0.04	12.4	0.54	166.5	1.5	100	0.11	-0.05	125
MC1811014	414852	6782338	1.305	0.146	2.15	0.562	113	2.54	23.8	7.09	400	0.08	0.89	12.8
MR2102036	413863	6785181	0.15	0.192	34	0.04	26.8	1.82	7.34	1.66	400	1.91	0.026	12.3
R133	413764	6785197	1.07	0.015	4.49	0.017	3.57	0.59	1.79	2.08	100	0.04	-0.04	2.7
WW190507	404430	6790659	1.68	0.289	3370	0.056	20.5	0.72	68.2	5.03	100	17.3	0.21	82.2
WW190517	414840	6782335	0.17	0.061	3.53	0.18	44.9	1.58	21.9	2.94	700	0.04	0.18	17.8